metabelian, supersoluble, monomial
Aliases: C33⋊9D8, C32⋊6D24, C12.33S32, C12⋊S3⋊9S3, (C3×C6).44D12, C3⋊3(C3⋊D24), C32⋊4C8⋊11S3, C32⋊7(D4⋊S3), (C3×C12).124D6, C3⋊1(C32⋊2D8), (C32×C6).47D4, C6.7(D6⋊S3), C2.3(C33⋊9D4), C6.37(C3⋊D12), C4.1(C32⋊4D6), (C32×C12).20C22, (C3×C12⋊S3)⋊4C2, (C3×C32⋊4C8)⋊3C2, (C3×C6).65(C3⋊D4), SmallGroup(432,457)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C33⋊9D8
G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, ac=ca, ad=da, eae=a-1, bc=cb, dbd-1=b-1, be=eb, dcd-1=ece=c-1, ede=d-1 >
Subgroups: 808 in 134 conjugacy classes, 31 normal (15 characteristic)
C1, C2, C2, C3, C3, C3, C4, C22, S3, C6, C6, C6, C8, D4, C32, C32, C32, C12, C12, C12, D6, C2×C6, D8, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, C3⋊C8, C24, D12, C3×D4, C33, C3×C12, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, D24, D4⋊S3, C3×C3⋊S3, C32×C6, C3×C3⋊C8, C32⋊4C8, C3×D12, C12⋊S3, C32×C12, C6×C3⋊S3, C32⋊2D8, C3⋊D24, C3×C32⋊4C8, C3×C12⋊S3, C33⋊9D8
Quotients: C1, C2, C22, S3, D4, D6, D8, D12, C3⋊D4, S32, D24, D4⋊S3, D6⋊S3, C3⋊D12, C32⋊4D6, C32⋊2D8, C3⋊D24, C33⋊9D4, C33⋊9D8
(1 32 46)(2 25 47)(3 26 48)(4 27 41)(5 28 42)(6 29 43)(7 30 44)(8 31 45)(9 23 35)(10 24 36)(11 17 37)(12 18 38)(13 19 39)(14 20 40)(15 21 33)(16 22 34)
(1 32 46)(2 47 25)(3 26 48)(4 41 27)(5 28 42)(6 43 29)(7 30 44)(8 45 31)(9 23 35)(10 36 24)(11 17 37)(12 38 18)(13 19 39)(14 40 20)(15 21 33)(16 34 22)
(1 46 32)(2 25 47)(3 48 26)(4 27 41)(5 42 28)(6 29 43)(7 44 30)(8 31 45)(9 23 35)(10 36 24)(11 17 37)(12 38 18)(13 19 39)(14 40 20)(15 21 33)(16 34 22)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 18)(2 17)(3 24)(4 23)(5 22)(6 21)(7 20)(8 19)(9 27)(10 26)(11 25)(12 32)(13 31)(14 30)(15 29)(16 28)(33 43)(34 42)(35 41)(36 48)(37 47)(38 46)(39 45)(40 44)
G:=sub<Sym(48)| (1,32,46)(2,25,47)(3,26,48)(4,27,41)(5,28,42)(6,29,43)(7,30,44)(8,31,45)(9,23,35)(10,24,36)(11,17,37)(12,18,38)(13,19,39)(14,20,40)(15,21,33)(16,22,34), (1,32,46)(2,47,25)(3,26,48)(4,41,27)(5,28,42)(6,43,29)(7,30,44)(8,45,31)(9,23,35)(10,36,24)(11,17,37)(12,38,18)(13,19,39)(14,40,20)(15,21,33)(16,34,22), (1,46,32)(2,25,47)(3,48,26)(4,27,41)(5,42,28)(6,29,43)(7,44,30)(8,31,45)(9,23,35)(10,36,24)(11,17,37)(12,38,18)(13,19,39)(14,40,20)(15,21,33)(16,34,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,18)(2,17)(3,24)(4,23)(5,22)(6,21)(7,20)(8,19)(9,27)(10,26)(11,25)(12,32)(13,31)(14,30)(15,29)(16,28)(33,43)(34,42)(35,41)(36,48)(37,47)(38,46)(39,45)(40,44)>;
G:=Group( (1,32,46)(2,25,47)(3,26,48)(4,27,41)(5,28,42)(6,29,43)(7,30,44)(8,31,45)(9,23,35)(10,24,36)(11,17,37)(12,18,38)(13,19,39)(14,20,40)(15,21,33)(16,22,34), (1,32,46)(2,47,25)(3,26,48)(4,41,27)(5,28,42)(6,43,29)(7,30,44)(8,45,31)(9,23,35)(10,36,24)(11,17,37)(12,38,18)(13,19,39)(14,40,20)(15,21,33)(16,34,22), (1,46,32)(2,25,47)(3,48,26)(4,27,41)(5,42,28)(6,29,43)(7,44,30)(8,31,45)(9,23,35)(10,36,24)(11,17,37)(12,38,18)(13,19,39)(14,40,20)(15,21,33)(16,34,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,18)(2,17)(3,24)(4,23)(5,22)(6,21)(7,20)(8,19)(9,27)(10,26)(11,25)(12,32)(13,31)(14,30)(15,29)(16,28)(33,43)(34,42)(35,41)(36,48)(37,47)(38,46)(39,45)(40,44) );
G=PermutationGroup([[(1,32,46),(2,25,47),(3,26,48),(4,27,41),(5,28,42),(6,29,43),(7,30,44),(8,31,45),(9,23,35),(10,24,36),(11,17,37),(12,18,38),(13,19,39),(14,20,40),(15,21,33),(16,22,34)], [(1,32,46),(2,47,25),(3,26,48),(4,41,27),(5,28,42),(6,43,29),(7,30,44),(8,45,31),(9,23,35),(10,36,24),(11,17,37),(12,38,18),(13,19,39),(14,40,20),(15,21,33),(16,34,22)], [(1,46,32),(2,25,47),(3,48,26),(4,27,41),(5,42,28),(6,29,43),(7,44,30),(8,31,45),(9,23,35),(10,36,24),(11,17,37),(12,38,18),(13,19,39),(14,40,20),(15,21,33),(16,34,22)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,18),(2,17),(3,24),(4,23),(5,22),(6,21),(7,20),(8,19),(9,27),(10,26),(11,25),(12,32),(13,31),(14,30),(15,29),(16,28),(33,43),(34,42),(35,41),(36,48),(37,47),(38,46),(39,45),(40,44)]])
45 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | ··· | 3H | 4 | 6A | 6B | 6C | 6D | ··· | 6H | 6I | 6J | 6K | 6L | 8A | 8B | 12A | 12B | 12C | ··· | 12N | 24A | 24B | 24C | 24D |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | ··· | 3 | 4 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 12 | 12 | 12 | ··· | 12 | 24 | 24 | 24 | 24 |
size | 1 | 1 | 36 | 36 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 36 | 36 | 36 | 36 | 18 | 18 | 2 | 2 | 4 | ··· | 4 | 18 | 18 | 18 | 18 |
45 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | - | + | + | |||||
image | C1 | C2 | C2 | S3 | S3 | D4 | D6 | D8 | D12 | C3⋊D4 | D24 | S32 | D4⋊S3 | D6⋊S3 | C3⋊D12 | C32⋊4D6 | C32⋊2D8 | C3⋊D24 | C33⋊9D4 | C33⋊9D8 |
kernel | C33⋊9D8 | C3×C32⋊4C8 | C3×C12⋊S3 | C32⋊4C8 | C12⋊S3 | C32×C6 | C3×C12 | C33 | C3×C6 | C3×C6 | C32 | C12 | C32 | C6 | C6 | C4 | C3 | C3 | C2 | C1 |
# reps | 1 | 1 | 2 | 1 | 2 | 1 | 3 | 2 | 2 | 4 | 4 | 3 | 2 | 1 | 2 | 2 | 2 | 4 | 2 | 4 |
Matrix representation of C33⋊9D8 ►in GL8(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 72 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
28 | 48 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 13 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 51 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 63 | 22 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 10 | 22 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 63 |
10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
47 | 63 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 62 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 60 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 30 | 60 |
0 | 0 | 0 | 0 | 0 | 0 | 13 | 43 |
G:=sub<GL(8,GF(73))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,72,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[28,3,0,0,0,0,0,0,48,13,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,51,63,0,0,0,0,0,0,12,22,0,0,0,0,0,0,0,0,10,12,0,0,0,0,0,0,22,63],[10,47,0,0,0,0,0,0,1,63,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,13,2,0,0,0,0,0,0,62,60,0,0,0,0,0,0,0,0,30,13,0,0,0,0,0,0,60,43] >;
C33⋊9D8 in GAP, Magma, Sage, TeX
C_3^3\rtimes_9D_8
% in TeX
G:=Group("C3^3:9D8");
// GroupNames label
G:=SmallGroup(432,457);
// by ID
G=gap.SmallGroup(432,457);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,85,254,135,58,1124,571,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^-1,b*c=c*b,d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations