Copied to
clipboard

G = C339D8order 432 = 24·33

6th semidirect product of C33 and D8 acting via D8/C4=C22

metabelian, supersoluble, monomial

Aliases: C339D8, C326D24, C12.33S32, C12⋊S39S3, (C3×C6).44D12, C33(C3⋊D24), C324C811S3, C327(D4⋊S3), (C3×C12).124D6, C31(C322D8), (C32×C6).47D4, C6.7(D6⋊S3), C2.3(C339D4), C6.37(C3⋊D12), C4.1(C324D6), (C32×C12).20C22, (C3×C12⋊S3)⋊4C2, (C3×C324C8)⋊3C2, (C3×C6).65(C3⋊D4), SmallGroup(432,457)

Series: Derived Chief Lower central Upper central

C1C32×C12 — C339D8
C1C3C32C33C32×C6C32×C12C3×C12⋊S3 — C339D8
C33C32×C6C32×C12 — C339D8
C1C2C4

Generators and relations for C339D8
 G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, ac=ca, ad=da, eae=a-1, bc=cb, dbd-1=b-1, be=eb, dcd-1=ece=c-1, ede=d-1 >

Subgroups: 808 in 134 conjugacy classes, 31 normal (15 characteristic)
C1, C2, C2, C3, C3, C3, C4, C22, S3, C6, C6, C6, C8, D4, C32, C32, C32, C12, C12, C12, D6, C2×C6, D8, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, C3⋊C8, C24, D12, C3×D4, C33, C3×C12, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, D24, D4⋊S3, C3×C3⋊S3, C32×C6, C3×C3⋊C8, C324C8, C3×D12, C12⋊S3, C32×C12, C6×C3⋊S3, C322D8, C3⋊D24, C3×C324C8, C3×C12⋊S3, C339D8
Quotients: C1, C2, C22, S3, D4, D6, D8, D12, C3⋊D4, S32, D24, D4⋊S3, D6⋊S3, C3⋊D12, C324D6, C322D8, C3⋊D24, C339D4, C339D8

Smallest permutation representation of C339D8
On 48 points
Generators in S48
(1 32 46)(2 25 47)(3 26 48)(4 27 41)(5 28 42)(6 29 43)(7 30 44)(8 31 45)(9 23 35)(10 24 36)(11 17 37)(12 18 38)(13 19 39)(14 20 40)(15 21 33)(16 22 34)
(1 32 46)(2 47 25)(3 26 48)(4 41 27)(5 28 42)(6 43 29)(7 30 44)(8 45 31)(9 23 35)(10 36 24)(11 17 37)(12 38 18)(13 19 39)(14 40 20)(15 21 33)(16 34 22)
(1 46 32)(2 25 47)(3 48 26)(4 27 41)(5 42 28)(6 29 43)(7 44 30)(8 31 45)(9 23 35)(10 36 24)(11 17 37)(12 38 18)(13 19 39)(14 40 20)(15 21 33)(16 34 22)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 18)(2 17)(3 24)(4 23)(5 22)(6 21)(7 20)(8 19)(9 27)(10 26)(11 25)(12 32)(13 31)(14 30)(15 29)(16 28)(33 43)(34 42)(35 41)(36 48)(37 47)(38 46)(39 45)(40 44)

G:=sub<Sym(48)| (1,32,46)(2,25,47)(3,26,48)(4,27,41)(5,28,42)(6,29,43)(7,30,44)(8,31,45)(9,23,35)(10,24,36)(11,17,37)(12,18,38)(13,19,39)(14,20,40)(15,21,33)(16,22,34), (1,32,46)(2,47,25)(3,26,48)(4,41,27)(5,28,42)(6,43,29)(7,30,44)(8,45,31)(9,23,35)(10,36,24)(11,17,37)(12,38,18)(13,19,39)(14,40,20)(15,21,33)(16,34,22), (1,46,32)(2,25,47)(3,48,26)(4,27,41)(5,42,28)(6,29,43)(7,44,30)(8,31,45)(9,23,35)(10,36,24)(11,17,37)(12,38,18)(13,19,39)(14,40,20)(15,21,33)(16,34,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,18)(2,17)(3,24)(4,23)(5,22)(6,21)(7,20)(8,19)(9,27)(10,26)(11,25)(12,32)(13,31)(14,30)(15,29)(16,28)(33,43)(34,42)(35,41)(36,48)(37,47)(38,46)(39,45)(40,44)>;

G:=Group( (1,32,46)(2,25,47)(3,26,48)(4,27,41)(5,28,42)(6,29,43)(7,30,44)(8,31,45)(9,23,35)(10,24,36)(11,17,37)(12,18,38)(13,19,39)(14,20,40)(15,21,33)(16,22,34), (1,32,46)(2,47,25)(3,26,48)(4,41,27)(5,28,42)(6,43,29)(7,30,44)(8,45,31)(9,23,35)(10,36,24)(11,17,37)(12,38,18)(13,19,39)(14,40,20)(15,21,33)(16,34,22), (1,46,32)(2,25,47)(3,48,26)(4,27,41)(5,42,28)(6,29,43)(7,44,30)(8,31,45)(9,23,35)(10,36,24)(11,17,37)(12,38,18)(13,19,39)(14,40,20)(15,21,33)(16,34,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,18)(2,17)(3,24)(4,23)(5,22)(6,21)(7,20)(8,19)(9,27)(10,26)(11,25)(12,32)(13,31)(14,30)(15,29)(16,28)(33,43)(34,42)(35,41)(36,48)(37,47)(38,46)(39,45)(40,44) );

G=PermutationGroup([[(1,32,46),(2,25,47),(3,26,48),(4,27,41),(5,28,42),(6,29,43),(7,30,44),(8,31,45),(9,23,35),(10,24,36),(11,17,37),(12,18,38),(13,19,39),(14,20,40),(15,21,33),(16,22,34)], [(1,32,46),(2,47,25),(3,26,48),(4,41,27),(5,28,42),(6,43,29),(7,30,44),(8,45,31),(9,23,35),(10,36,24),(11,17,37),(12,38,18),(13,19,39),(14,40,20),(15,21,33),(16,34,22)], [(1,46,32),(2,25,47),(3,48,26),(4,27,41),(5,42,28),(6,29,43),(7,44,30),(8,31,45),(9,23,35),(10,36,24),(11,17,37),(12,38,18),(13,19,39),(14,40,20),(15,21,33),(16,34,22)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,18),(2,17),(3,24),(4,23),(5,22),(6,21),(7,20),(8,19),(9,27),(10,26),(11,25),(12,32),(13,31),(14,30),(15,29),(16,28),(33,43),(34,42),(35,41),(36,48),(37,47),(38,46),(39,45),(40,44)]])

45 conjugacy classes

class 1 2A2B2C3A3B3C3D···3H 4 6A6B6C6D···6H6I6J6K6L8A8B12A12B12C···12N24A24B24C24D
order12223333···346666···6666688121212···1224242424
size1136362224···422224···4363636361818224···418181818

45 irreducible representations

dim11122222222444444444
type++++++++++++-++
imageC1C2C2S3S3D4D6D8D12C3⋊D4D24S32D4⋊S3D6⋊S3C3⋊D12C324D6C322D8C3⋊D24C339D4C339D8
kernelC339D8C3×C324C8C3×C12⋊S3C324C8C12⋊S3C32×C6C3×C12C33C3×C6C3×C6C32C12C32C6C6C4C3C3C2C1
# reps11212132244321222424

Matrix representation of C339D8 in GL8(𝔽73)

10000000
01000000
000720000
001720000
00001000
00000100
00000010
00000001
,
10000000
01000000
00100000
00010000
00001000
00000100
0000007272
00000010
,
10000000
01000000
00100000
00010000
000007200
000017200
00000010
00000001
,
2848000000
313000000
007200000
000720000
0000511200
0000632200
0000001022
0000001263
,
101000000
4763000000
000720000
007200000
0000136200
000026000
0000003060
0000001343

G:=sub<GL(8,GF(73))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,72,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[28,3,0,0,0,0,0,0,48,13,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,51,63,0,0,0,0,0,0,12,22,0,0,0,0,0,0,0,0,10,12,0,0,0,0,0,0,22,63],[10,47,0,0,0,0,0,0,1,63,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,13,2,0,0,0,0,0,0,62,60,0,0,0,0,0,0,0,0,30,13,0,0,0,0,0,0,60,43] >;

C339D8 in GAP, Magma, Sage, TeX

C_3^3\rtimes_9D_8
% in TeX

G:=Group("C3^3:9D8");
// GroupNames label

G:=SmallGroup(432,457);
// by ID

G=gap.SmallGroup(432,457);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,85,254,135,58,1124,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^-1,b*c=c*b,d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽